Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Victor B. Rybakov,^a* Antonina Yu. Liakina,^b Inna S. Popova,^b Andrey A. Formanovsky^b and Leonid A. Aslanov^a

^aDepartment of Chemistry, Moscow State University, 119992 Moscow, Russian Federation, and ^bM. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117781 Moscow, Russian Federation

Correspondence e-mail: rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.040 wR factor = 0.116 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

2-(5-Methyl-4-phenyl-1,3-thiazol-2-yl)-1-phenylethanol

The title compound, $C_{18}H_{17}NOS$, (2), is the product of substitution at the methyl group, in the 2-position of 2,5-dimethyl-4-phenylthiazole, with benzaldehyde. Molecules of (2) form extended chains through $O-H \cdots N$ hydrogen bonds.

Received 28 July 2003 Accepted 6 August 2003 Online 15 August 2003

Comment

The metallation of 2,5-dimethyl-4-phenylthiazole by butyllithium can generate anionic methyl groups at positions 2 and 5. The title structure, (2), is the product of metallation and the subsequent reaction of the anion with benzaldehyde, and was prepared according to the Scheme below.

The 5-membered heterocycle (S1/C2/N3/C4/C5) (Fig. 1) is nearly planar and there is conjugation between it and the attached phenyl ring (C6–C11), the dihedral angle being 6.83 (11)°. An O13–H131···N3 intermolecular hydrogen bond [H131···N3ⁱ = 1.96 (4) Å, O13···N3ⁱ = 2.831 (2) Å and O13–H131···N3ⁱ = 179 (3)°; symmetry code: (i) $x, \frac{1}{2} - y,$ $z - \frac{1}{2}$] links the molecules in the crystal into extended chains.

Experimental

Solvents were dried and distilled under an inert atmosphere. The starting thiazole, (1), was prepared from thioacetamide and 2-bromo-1-phenylpropanone using the procedure of Hantch (1889). The reaction was carried out under an inert atmosphere (dry Argon). The ¹H NMR spectrum of (2) was recorded on a Bruker AMX-400. The melting point was determined on a hot-stage Boëtius apparatus. BuLi in C₆H₁₄ (6 ml, 1.6 M solution) was added to a solution of thiazole (1) (1 g, 5.3 mmol) in 20 ml $Et_2O/4$ ml C_4H_8O for 10 min at 203 K (dry CO₂/C₇H₈). Benzaldehyde (0.67 g, 6 mmol) in 2 ml of C₄H₈O was added dropwise to the reaction mixture after 30 min of stirring at 203 K. Then 10 ml of 1 M aqueous citric acid were added after 30 min of stirring and the reaction mixture was left to warm to room temperature; it was then washed with water and brine, dried over Na₂SO₄ and filtered. The solvent was evaporated in vacuo and 20 ml of C₆H₁₄ was added to the resulting yellow oil; after 15 min of heating the mixture was cooled, yielding 0.5 g (60%) of a white precipitate. The product was recrystallized from CH₂Cl₂/C₆H₁₄, m.p. 363–365 K. ¹H NMR (CDCl₃, 400 MHz, p.p.m.): 7.64 (*d*, 2H, Ph), 7.43 (*t*, 4H, Ph), 7,35 (t, 3H, Ph), 7.28 (d, 1H, Ph), 5.19 (dd, 1H, CH), 3.30 (dd, 1H, CH_2 , J = 4.5 MHz), 3.25 (dd, 1H, CH_2 , J = 8.5 MHz), 2.53 (s, 3H, CH_3).

Figure 1

ORTEP-3 (Farrugia, 2003) plot of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radius.

Figure 2

*PLUTON*97 (Spek, 1997) packing diagram, with the hydrogen-bonding scheme indicated by dashed lines.

Crystal data

 $\begin{array}{l} C_{18}H_{17}\text{NOS} \\ M_r = 295.39 \\ \text{Monoclinic, } P2_1/c \\ a = 6.2820 \ (9) \ \text{\AA} \\ b = 28.836 \ (4) \ \text{\AA} \\ c = 8.4583 \ (13) \ \text{\AA} \\ \beta = 97.560 \ (10)^{\circ} \\ V = 1518.9 \ (4) \ \text{\AA}^3 \\ Z = 4 \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer Non-profiled $\omega/2\theta$ scans Absorption correction: none 3201 measured reflections 2997 independent reflections 2613 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.116$ S = 1.052997 reflections 195 parameters H atoms treated by a mixture of independent and constrained refinement $D_x = 1.292 \text{ Mg m}^{-3}$ Cu K\alpha radiation Cell parameters from 25 reflections $\theta = 33-35^{\circ}$ $\mu = 1.86 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless $0.30 \times 0.30 \times 0.30 \text{ mm}$

 $\theta_{\max} = 74.9^{\circ}$ $h = -7 \rightarrow 7$ $k = 0 \rightarrow 36$ $l = 0 \rightarrow 9$ 1 standard reflection every 226 reflections frequency: 49 min intensity decay: 2%

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0712P)^2 \\ &+ 0.2241P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.31 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.28 \text{ e } \text{ Å}^{-3} \end{split}$$

S1-C2	1.7126 (17)	C9-C10	1.375 (4)
S1-C5	1.7270 (16)	C10-C11	1.385 (3)
C2-N3	1.299 (2)	C12-C13	1.535 (2)
C2-C12	1.505 (2)	C13-O13	1.4203 (19)
N3-C4	1.395 (2)	C13-C14	1.517 (2)
C4-C5	1.375 (2)	O13-H131	0.87 (3)
C4-C6	1.481 (2)	C14-C19	1.385 (2)
C5-C51	1.497 (2)	C14-C15	1.388 (2)
C6-C7	1.387 (3)	C15-C16	1.389 (3)
C6-C11	1.395 (3)	C16-C17	1.373 (4)
C7-C8	1.386 (3)	C17-C18	1.375 (3)
C8-C9	1.373 (4)	C18-C19	1.387 (3)
C2-S1-C5	90.68 (8)	C8-C9-C10	118.8 (2)
N3-C2-C12	123.73 (15)	C9-C10-C11	120.6 (2)
N3-C2-S1	114.11 (12)	C10-C11-C6	121.2 (2)
C12-C2-S1	122.16 (12)	C2-C12-C13	112.99 (13)
C2-N3-C4	111.88 (14)	O13-C13-C14	111.21 (13)
C5-C4-N3	114.35 (14)	O13-C13-C12	108.40 (13)
C5-C4-C6	127.76 (15)	C14-C13-C12	110.66 (12)
N3-C4-C6	117.89 (15)	C13-O13-H131	107 (2)
C4-C5-C51	133.52 (16)	C19-C14-C15	118.74 (16)
C4-C5-S1	108.97 (12)	C19-C14-C13	121.07 (15)
C51-C5-S1	117.41 (13)	C15-C14-C13	120.19 (15)
C7-C6-C11	117.30 (17)	C14-C15-C16	120.40 (19)
C7-C6-C4	122.51 (17)	C17-C16-C15	120.3 (2)
C11-C6-C4	120.19 (16)	C16-C17-C18	119.68 (19)
C8-C7-C6	121.0 (2)	C17-C18-C19	120.4 (2)
C9-C8-C7	121.1 (2)	C14-C19-C18	120.43 (19)

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O13-H131\cdots N3^i$	0.87 (4)	1.96 (4)	2.831 (2)	179 (3)
C	1			

Symmetry code: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$.

Table 1

The hydroxyl H atom was refined isotropically to give an O–H bond length of 0.87 (3) Å. H atoms bonded to C atoms were included in calculated positions and refined in the riding-motion approximation (C–H = 0.93–0.98 Å), with $U_{\rm iso} = 1.2U_{\rm eq}$ (1.5 $U_{\rm eq}$ for methyl) of the carrier atom.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2003) and *PLUTON97* (Spek, 1997); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2003).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

References

Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (2003). WinGX and ORTEP-3 for Windows. University of Glasgow, Scotland.

Hantch, A. (1889). *Liebigs Ann. Chem.* **250**, 257–266.. Harms, K. & Wocadlo, S. (1995). *XCAD*4. University of Marburg, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1997). PLUTON97. University of Utrecht, The Netherlands.