Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Victor B. Rybakov, ${ }^{\text {a* }}$

Antonina Yu. Liakina, ${ }^{\text {b }}$
Inna S. Popova, ${ }^{\text {b }}$
Andrey A. Formanovsky ${ }^{\text {b }}$ and Leonid A. Aslanov ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Moscow State University, 119992 Moscow, Russian
Federation, and ${ }^{\mathrm{b}} \mathrm{M} . \mathrm{M}$. Shemyakin and Yu . A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117781 Moscow, Russian Federation

Correspondence e-mail:
rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.116$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(5-Methyl-4-phenyl-1,3-thiazol-2-yl)-1-phenylethanol

The title compound, $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NOS}$, (2), is the product of substitution at the methyl group, in the 2-position of 2,5-dimethyl-4-phenylthiazole, with benzaldehyde. Molecules of (2) form extended chains through $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The metallation of 2,5-dimethyl-4-phenylthiazole by butyllithium can generate anionic methyl groups at positions 2 and 5. The title structure, (2), is the product of metallation and the subsequent reaction of the anion with benzaldehyde, and was prepared according to the Scheme below.

The 5-membered heterocycle (S1/C2/N3/C4/C5) (Fig. 1) is nearly planar and there is conjugation between it and the attached phenyl ring (C6-C11), the dihedral angle being $6.83(11)^{\circ}$. An O13-H131‥N3 intermolecular hydrogen bond $\left[\mathrm{H} 131 \cdots \mathrm{~N} 3^{\mathrm{i}}=1.96\right.$ (4) $\AA, \mathrm{O} 13 \cdots \mathrm{~N} 3^{\mathrm{i}}=2.831$ (2) \AA and $\mathrm{O} 13-\mathrm{H} 131 \cdots \mathrm{~N} 3^{\mathrm{i}}=179(3)^{\circ}$; symmetry code: (i) $x, \frac{1}{2}-y$, $z-\frac{1}{2}$] links the molecules in the crystal into extended chains.

Experimental

Solvents were dried and distilled under an inert atmosphere. The starting thiazole, (1), was prepared from thioacetamide and 2-bromo-1-phenylpropanone using the procedure of Hantch (1889). The reaction was carried out under an inert atmosphere (dry Argon). The ${ }^{1} \mathrm{H}$ NMR spectrum of (2) was recorded on a Bruker AMX-400. The melting point was determined on a hot-stage Boëtius apparatus. BuLi in $\mathrm{C}_{6} \mathrm{H}_{14}(6 \mathrm{ml}, 1.6 \mathrm{M}$ solution) was added to a solution of thiazole (1) $(1 \mathrm{~g}, 5.3 \mathrm{mmol})$ in $20 \mathrm{ml} \mathrm{Et}_{2} \mathrm{O} / 4 \mathrm{ml} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ for 10 min at 203 K (dry $\mathrm{CO}_{2} / \mathrm{C}_{7} \mathrm{H}_{8}$). Benzaldehyde ($0.67 \mathrm{~g}, 6 \mathrm{mmol}$) in 2 ml of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ was added dropwise to the reaction mixture after 30 min of stirring at 203 K . Then 10 ml of 1 M aqueous citric acid were added after 30 min of stirring and the reaction mixture was left to warm to room temperature; it was then washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated in vacuo and 20 ml of $\mathrm{C}_{6} \mathrm{H}_{14}$ was added to the resulting yellow oil; after 15 min of heating the mixture was cooled, yielding $0.5 \mathrm{~g}(60 \%)$ of a white precipitate. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{6} \mathrm{H}_{14}$, m.p. $363-365 \mathrm{~K}$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$, p.p.m.): $7.64(d, 2 \mathrm{H}, \mathrm{Ph}), 7.43(t, 4 \mathrm{H}, \mathrm{Ph})$, $7,35(t, 3 H, \mathrm{Ph}), 7.28(d, 1 \mathrm{H}, \mathrm{Ph}), 5.19(d d, 1 \mathrm{H}, \mathrm{CH}), 3.30(d d, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}, J=4.5 \mathrm{MHz}\right), 3.25\left(d d, 1 \mathrm{H}, \mathrm{CH}_{2}, J=8.5 \mathrm{MHz}\right), 2.53\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Received 28 July 2003
Accepted 6 August 2003
Online 15 August 2003

Figure 1
ORTEP-3 (Farrugia, 2003) plot of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radius.

Figure 2
PLUTON97 (Spek, 1997) packing diagram, with the hydrogen-bonding scheme indicated by dashed lines.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NOS}$
$M_{r}=295.39$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=6.2820(9) \AA$
$b=28.836(4) \AA$
$c=8.4583(13) \AA$
$\beta=97.560(10)^{\circ}$
$V=1518.9(4) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.292 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=33-35^{\circ} \\
& \mu=1.86 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.30 \times 0.30 \times 0.30 \mathrm{~mm} \\
& \\
& \theta_{\max }=74.9^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=0 \rightarrow 36 \\
& l=0 \rightarrow 9 \\
& 1 \text { standard reflection } \\
& \text { every } 226 \text { reflections } \\
& \text { frequency: } 49 \text { min } \\
& \text { intensity decay: } 2 \%
\end{aligned}
$$

Data collection
Enraf-Nonius CAD-4 diffractometer
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: none
3201 measured reflections 2997 independent reflections 2613 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.116$
$S=1.05$
2997 reflections
195 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

S1-C2	$1.7126(17)$	C9-C10	$1.375(4)$
S1-C5	$1.7270(16)$	C10-C11	$1.385(3)$
C2-N3	$1.299(2)$	C12-C13	$1.535(2)$
C2-C12	$1.505(2)$	C13-O13	$1.4203(19)$
N3-C4	$1.395(2)$	C13-C14	$1.517(2)$
C4-C5	$1.375(2)$	O13-H131	$0.87(3)$
C4-C6	$1.481(2)$	C14-C19	$1.385(2)$
C5-C51	$1.497(2)$	C14-C15	$1.388(2)$
C6-C7	$1.387(3)$	C15-C16	$1.389(3)$
C6-C11	$1.395(3)$	C16-C17	$1.373(4)$
C7-C8	$1.386(3)$	C17-C18	$1.375(3)$
C8-C9	$1.373(4)$	C18-C19	$1.387(3)$
C2-S1-C5	$90.68(8)$	C8-C9-C10	$118.8(2)$
N3-C2-C12	$123.73(15)$	C9-C10-C11	$120.6(2)$
N3-C2-S1	$114.11(12)$	C10-C11-C6	$121.2(2)$
C12-C2-S1	$122.16(12)$	C2-C12-C13	$112.99(13)$
C2-N3-C4	$111.88(14)$	O13-C13-C14	$111.21(13)$
C5-C4-N3	$114.35(14)$	O13-C13-C12	$108.40(13)$
C5-C4-C6	$127.76(15)$	C14-C13-C12	$110.66(12)$
N3-C4-C6	$117.89(15)$	C13-O13-H131	$107(2)$
C4-C5-C51	$133.52(16)$	C19-C14-C15	$118.74(16)$
C4-C5-S1	$108.97(12)$	C19-C14-C13	$121.07(15)$
C51-C5-S1	$117.41(13)$	C15-C14-C13	$120.19(15)$
C7-C6-C11	$117.30(17)$	C14-C15-C16	$120.40(19)$
C7-C6-C4	$122.51(17)$	C17-C16-C15	$120.3(2)$
C11-C6-C4	$120.19(16)$	C16-C17-C18	$119.68(19)$
C8-C7-C6	$121.0(2)$	C11-C18-C19	$120.4(2)$
C9-C8-C7	$121.1(2)$	C14-C19-C18	$120.43(19)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 13-\mathrm{H} 131 \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.87(4)$	$1.96(4)$	$2.831(2)$	$179(3)$

Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.
The hydroxyl H atom was refined isotropically to give an $\mathrm{O}-\mathrm{H}$ bond length of 0.87 (3) \AA. H atoms bonded to C atoms were included in calculated positions and refined in the riding-motion approximation $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$, with $U_{\text {iso }}=1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl $)$ of the carrier atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 2003) and PLUTON97 (Spek, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 2003).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

References

Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (2003). WinGX and ORTEP-3 for Windows. University of Glasgow, Scotland.

organic papers

Hantch, A. (1889). Liebigs Ann. Chem. 250, 257-266.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (1997). PLUTON97. University of Utrecht, The Netherlands.

